數學 百分網手機站

高一關于集合間的基本關系的數學知識點歸納

時間:2019-11-13 數學 我要投稿

  【例1】

  已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

  A) M=N P B) M N=P C) M N P D) N P M

  分析一:從判斷元素的共性與區別入手。

  解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z},

  對于集合P:{x|x= ,p∈Z},由于3(n—1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以M N=P,故選B。

  分析二:簡單列舉集合中的元素。

  解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

  = ∈N, ∈N,∴M N,又 = M,∴M N,

  變式:設集合 , ,則( B ),

  A。M=N B。M N C。N M D。

  解:

  當 時,2k+1是奇數,k+2是整數,選B

  【例2】

  定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為A)1 B)2 C)3 D)4。

  分析:確定集合A*B子集的個數,首先要確定元素的個數,然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

  解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

  變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數為?

  A)5個 B)6個 C)7個 D)8個

  變式2:已知{a,b} A {a,b,c,d,e},求集合A。

  解:由已知,集合中必須含有元素a,b。

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。

  評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 。

  【例3】

  已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

  解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。

  ∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

  ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為—2和1,

  ∴ ∴

  變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值。

  解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5

  ∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴

  又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4

  ∴b=—4,c=4,m=—5

  【例4】

  已知集合A={x|(x—1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>—2},且A∩B={x|1

  分析:先化簡集合A,然后由A∪B和A∩B分別確定數軸上哪些元素屬于B,哪些元素不屬于B。

  解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。

  綜合以上各式有B={x|—1≤x≤5}

  變式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=,求a,b。(答案:a=—2,b=0)

  變式2:設M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有滿足條件的a的集合。

  解答:M={—1,3} , ∵M∩N=N, ∴N M

  ①當 時,ax—1=0無解,∴a=0 ②

  綜①②得:所求集合為{—1,0, }

  【例5】

  已知集合 ,函數y=log2(ax2—2x+2)的定義域為Q,若P∩Q≠,求實數a的取值范圍。

  分析:先將原問題轉化為不等式ax2—2x+2>0在 有解,再利用參數分離求解。

  解答:(1)若 , 在 內有有解

  令 當 時,

  所以a>—4,所以a的取值范圍是

  變式:若關于x的方程 有實根,求實數a的取值范圍。

幸运飞艇彩票是正规的吗